4.7 Article

An analysis of glass-glass CIGS manufacturing costs

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 154, 期 -, 页码 1-10

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2016.04.029

关键词

CIGS; Photovoltaic; Co-evaporation; Selenization; Manufacturing cost analysis; LCOE

资金

  1. Solar Energy Technologies Office of the U.S. Department of Energy [DE-AC36-08GO28308]

向作者/读者索取更多资源

This article examines current cost drivers and potential avenues to reduced cost for monolithic, glass glass Cu(In,Ga)(Se,S)(2) (CIGS) modules by constructing a comprehensive bottom-up cost model. For a reference case where sputtering plus batch sulfurization after selenization (SAS) is employed, we compute a manufacturing cost of $69/m(2) if the modules are made in the United States at a 1 GW/year production volume. At 14% module efficiency, this corresponds to a manufacturing cost of $0.49/W-DC and a minimum sustainable price (MSP) of $0.67/W-DC. We estimate that MSP could vary within 20% of this value given the range of quoted input prices, and existing variations in module design, manufacturing processes, and manufacturing location. Potential for reduction in manufacturing costs to below $0.40/W-DC may be possible if average production module efficiencies can be increased above 17% without increasing $/m(2) costs; even lower costs could be achieved if $/m(2) costs could be reduced, particularly via innovations in the CIGS deposition process or balance-of-module elements. We present the impact on cost of regional factors, CIGS deposition method, device design, and price fluctuations. One metric of competitiveness-levelized cost of energy (LCOE) - is also assessed for several U.S. locations and compared to that of standard multi-crystalline silicon (m(c-Si)) and cadmium telluride (CdTe). (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据