4.7 Article

Preparation of Cu2ZnSnS4-based thin film solar cells by a combustion method

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 146, 期 -, 页码 16-24

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2015.11.027

关键词

Cu2ZnSnS4; Combustion method; Band gap; Formation mechanism; Solar cell

资金

  1. National Basic Research Program of China (973Program) [2012CB922001]

向作者/读者索取更多资源

A novel route that fabricate Cu2ZnSnS4 solar cells by a combustion method has been successfully conducted. The probable formation mechanism of Cu2ZnSnS4 for metal oxides system during the sulfurization process is analyzed in detail through the phase analysis in several continuous temperature ranges in combination with thermodynamic calculation. The effects of annealing temperature on the structural, morphological, compositional and optical properties of absorber layer were studied. The UV-vis spectra revealed the band gap of as-prepared thin films varying from 1.48 to 1.34 eV along with rising the sulfurization temperature. It was found that secondary phase with narrow band gap significantly affects the band gap of Cu2ZnSnS4. The best performance of the Cu2ZnSnS4 thin film solar cells prepared by the combustion method achieved a powder conversion efficiency (PCE) of 1.6% with a short circuit current density of 10.5 mA/cm(2) and an open circuit voltage of 505 mV. This low-cost non-vacuum technique has a promising application in synthesis of light-absorbing layers for photovoltaic devices, which can vastly reduce the costs and simplify the preparation process. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据