4.7 Article

All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 150, 期 -, 页码 19-31

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2016.01.013

关键词

Small molecule; Diketopyrrolopyrrole; Inverted organic solar cell; Light soaking; Degradation; Charge transport layer

资金

  1. National University of Singapore (NUS)
  2. Singapore's National Research Foundation (NRF) through the Singapore Economic Development Board (EDB)
  3. NRF Energy Innovation Programme Office

向作者/读者索取更多资源

Organic solar cells (OSC) based on diketopyrrolopyrrole (DPP) small molecule have achieved relatively high efficiency (7%) in recent times. 2,5-di(2-ethylhexyl)-3,6-bis-(5 ''-n-hexyl-[2,2',5',2 '']terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH) is the workhorse material for small molecule OSC as it has good solution-processing capability. However, there was no previous report on improving the device stability in inverted organic solar cells (IOSC) by using this material. Furthermore, the degradation and light-soaking behavior of this material in IOSC are also not well-addressed. In this work, we have fabricated a stable, light-soaking free, solution-processed and efficient SMDPPEH:PC61BM based IOSC for the first time. Fluorosurfactant modified PEDOT:PSS and fluorinated TiOx (F-TiOx) transport layers were used to circumvent the inherent processability and light-soaking issues. An exclusive study on the device stability and light-soaking characteristics were also carried out for the first time. The final device provides the following merits: (i) comparable material stability to P3HT polymer, suggesting a potential for further development of DPP materials for high-efficiency devices; (ii) F-TiOx can be used universally to fabricate a light-soaking free device with a wide range of photoactive materials from polymers to small molecules and; (iii) higher device efficiency compared to the non-inverted counterpart were obtained when the modified transport layers were used. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据