4.6 Article

Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications

期刊

SOLAR ENERGY
卷 123, 期 -, 页码 17-22

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2015.10.044

关键词

Mesoporous single-crystal; Anatase TiO2; Low-temperature hydrothermal; Templated synthesis; Solar cell

资金

  1. Australian Research Council (ARC)

向作者/读者索取更多资源

A facile low-temperature synthetic method of growing semiconductor mesoporous single-crystal of anatase TiO2 directly on FTO substrate was developed. The templated hydrothermal synthesis approach was employed to make mesoporous single-crystal TiO2 that contains pores tens to hundreds of nanometres in size under low temperature, which opens a potential way to produce useful functional thin film photoanodes by one-pot approach for fabricating cheap and highly efficient optoelectronic devices. This method is based on seeded nucleation and growth inside a pre-formed mesoporous silica film template immersed in diluted precursor solution. The electrochemical characterizations showed that the directly grown mesoporous single-crystal thin film on FTO substrate has substantially higher conductivity and electron mobility than conventionally deposited TiO2 thin films by printing techniques. Hence, using the as-synthesized mesoporous single-crystal thin film baking at 150 degrees C as photoanodes, an encouraging 5.83% solar to electricity conversion efficiency was achieved. It is expected that the developed mesoporous single-crystals on FTO substrate may find broader applications in many different technologies. This generic synthetic strategy extends the possibility of mesoporous single-crystal films directly growing to a range of substrates. Moreover, this approach could work at lower temperatures below 150 degrees C, which could considerably minimize the environmental impact and production costs of high performance mesoporous materials. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据