4.3 Article

Genotypic variations in ion homeostasis, photochemical efficiency and antioxidant capacity adjustment to salinity in cotton (Gossypium hirsutum L.)

期刊

SOIL SCIENCE AND PLANT NUTRITION
卷 62, 期 3, 页码 240-246

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00380768.2016.1172022

关键词

cotton; salt tolerance; photochemical efficiency; ion flux; antioxidant enzymes

资金

  1. China Agricultural Research System [CARS-18-05]
  2. Modern Agricultural Industry Technology System in Henan [S2013-07-1]
  3. Central Research Institutes of Basic Research
  4. Public Service Special Foundation [1610162014002]

向作者/读者索取更多资源

To determine the genotypic variation in response to salt (NaCl) stress in cotton (Gossypium hirsutum L.) seedlings, potassium (K+) and sodium (Na+) homeostasis, photochemical energy utility, reactive oxygen metabolism and the activity of antioxidant enzymes were comparatively analyzed in three cotton cultivars (CCRI 49, CCRI 35 and Z 51504) under salt constraint. The results showed that NaCl treatment significantly inhibited biomass accumulation, and the extent of inhibition was highest in CCRI 49 and lowest in Z 51504. Salinity caused an ion imbalance in plants but ion homeostasis was less pronounced in Z 51504, as it accumulated more K+ and less Na+. Experiments of salt shock treatment were tested using a non-invasive micro-test (NMT) system, which also revealed that Z 51504 had lower Na+ influx and better K+ retention. Salinity increased excess-energy dissipation [non-photochemical quenching (qN) and photorespiration rate (PR)], but depressed photochemical efficiency such as photosynthesis rate (P-n), quenching (qP), photochemical quantum yield of photosystem (phi(PSII)) and electron transport rate (ETR). As a result, more electrons were driven to other sinks, for example decreasing ETR/P-n and increasing the O-2(-) generation rate. However, the superior tolerance of Z 51504 had a better balance of photochemical energy under salt conditions, displayed higher photochemical efficiency and excess-energy dissipation. Furthermore, the antioxidant enzyme activities were also affected by salt stress and less effectively removed reactive oxygen species. The antioxidant enzyme activities of Z 51504 were higher than those of CCRI 49 and CCRI 35, which resulted in lower levels of reactive oxygen species (ROS) and mitigated the salt-induced membrane lipid peroxidation. The overall results indicated that more effective retention of ions, photochemical energy utility and ROS-removing capability were probably the main reasons for the stronger salt tolerance in Z 51504.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据