4.7 Article

Enhanced gross nitrogen transformation rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide and temperature

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 94, 期 -, 页码 80-87

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2015.11.025

关键词

Elevated carbon dioxide; Gross N transformation; N-15 tracer model; Rice field; Global warming

资金

  1. National Science Foundation of China [41171238, 41471192]
  2. Special Fund for Agro-Scientific Research in the Public Interest [200903003, 201503106]
  3. Ministry of Science and Technology [2013BAD11B01]

向作者/读者索取更多资源

Climate change, particularly the combined effects of elevated CO2 and temperature, is likely to alter the internal nitrogen (N) cycle of agricultural ecosystems. However, little is known about such phenomena in paddy soils, which are expected to expand in the near future due to population increase. A N-15 tracer study, with soil taken from field manipulation treatments, showed that elevated CO2, either alone or combined with elevated temperature, stimulated the mineralization of labile organic N 37-fold but decreased the mineralization of recalcitrant organic N. In contrast, elevated temperature alone accelerated the mineralization of recalcitrant organic N approximately 2-fold but had no effect on the mineralization of labile organic N. Ammonium immobilization increased under elevated CO2 and elevated temperature. Gross and net NO3- production decreased under elevated CO2 and the combined treatments, whereas elevated temperature caused an increase in both rates. Dissimilatory reduction of NO3- to NH4+ increased under elevated CO2 but decreased with elevated temperature. Our findings suggest that progressive N limitation can be alleviated by increasing gross N transformation rates under each climate change treatment and that counteraction will dominate the interactive responses of CO2 and temperature. Because we expect a concomitant increase in both CO2 and temperature, we only expect minor effects of these particular factors arising as a result of climate on soil N dynamics in paddy soils. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据