4.7 Article

Combining no-tillage, rice straw mulch and nitrogen fertilizer application to increase the soil carbon balance of upland rice field in northern Benin

期刊

SOIL & TILLAGE RESEARCH
卷 163, 期 -, 页码 152-159

出版社

ELSEVIER
DOI: 10.1016/j.still.2016.05.019

关键词

Heterotrophic respiration; Management practices; Root respiration; Soil carbon storage

资金

  1. West Africa Science Service Center on Climate Change and Adapted Land Use (WASCAL) programme

向作者/读者索取更多资源

Agricultural management practices are frequently non conservative and can lead to substantial loss of soil organic carbon and soil fertility, but for many regions in Africa the knowledge is very limited. To study the effect of local agricultural practices on soil organic carbon content and to explore effective ways to increase soil carbon storage, field experiments were conducted on an upland rice soil (Lixisol) in northern Benin in West Africa. The treatments comprised two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha(-1)) and three nitrogen fertilizer levels (no nitrogen, 60 kg ha(-1), 120 kg ha(-1)). Phosphorus and potassium fertilizers were applied to be non-limiting at 40 kg P2O5 ha(-1) and 40 kg K2O ha(-1) per cropping season. Heterotrophic respiration was higher in manual tillage than no-tillage, and higher in mulched than in non-mulched treatments. Under the current management practices (manual tillage, with no residue and no nitrogen fertilization) in upland rice fields in northern Benin, the carbon added as aboveground biomass and root biomass was not enough to compensate for the loss of carbon from organic matter decomposition, rendering the upland rice fields as net sources of atmospheric CO2. With no-tillage, 3 Mg ha(-1) of rice straw mulch and 60 kg N ha(-1), the soil carbon balance was approximately zero. With no other changes in management practices, an increase in nitrogen level from 60 kg N ha(-1) to 120 kg N ha(-1) resulted in a positive soil carbon balance. Considering the high cost of inorganic nitrogen fertilizer and the potential risk of soil and air pollution often associated with intensive fertilizer use, implementation of no-tillage combined with application of 3 Mg ha(-1) of rice straw mulch and 60 kg N ha(-1) could be recommended to the smallholder farmers to compensate for the loss of carbon from organic matter decomposition in upland rice fields in northern Benin. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据