4.6 Article

Stretching liquid bridges with moving contact lines: comparison of liquid-transfer predictions and experiments

期刊

SOFT MATTER
卷 12, 期 36, 页码 7457-7469

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6sm00876c

关键词

-

资金

  1. Industrial Partnership for Research in Interfacial and Materials Engineering of the University of Minnesota

向作者/读者索取更多资源

Transfer of liquid from one surface to another plays a key role in printing processes. During liquid transfer, a liquid bridge is formed and then undergoes significant extensional motion while its contact lines are free to move on the bounding solid surfaces. In this work, we develop one-dimensional (1D) slender-jet and two-dimensional (2D) axisymmetric models of this phenomenon and compare the resulting predictions with previously published experimental data. For very low capillary numbers (Ca) (quasi-static stretching), predictions from both models of the amount of liquid transferred agree well with the experimental data, provided that the difference in receding contact angles (vertical bar Delta theta(r)vertical bar) between the two surfaces is sufficiently large. Notably, the amount of liquid transferred is primarily governed by the overall bridge shape and is not significantly influenced by contact-line motion toward the end of bridge stretching. For O(1) values of Ca, the models predict that each surface receives half the liquid, in agreement with experimental observations. For intermediate values of Ca (and very low values of Ca when vertical bar Delta theta(r)vertical bar is small enough), predictions from each model can deviate substantially from the experimental data, which we speculate is due to the influence of surface heterogeneities that are not included in the models. In this regime, there can be significant differences between the predictions of the 1D and 2D models, which is due to the tendency of the contact line to slip more in the 1D model. The models are also used to understand the influence of initial bridge shape on liquid transfer and to rationalize related experimental observations. The results from these fundamental studies will aid the optimization of gravure and other printing processes for manufacturing of printed electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据