4.6 Article

Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures

期刊

SOFT MATTER
卷 12, 期 2, 页码 460-468

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5sm01749a

关键词

-

向作者/读者索取更多资源

Viscoelastic polymer solutions flowing through reservoir rocks have been found to improve oil displacement efficiency when the aqueous-phase shear-rate exceeds a critical value. A possible mechanism for this enhanced recovery is elastic turbulence that causes breakup and mobilization of trapped oil ganglia. Here, we apply nuclear magnetic resonance (NMR) pulsed field gradient (PFG) diffusion measurements in a novel way to detect increased motion of disconnected oil ganglia. The data are acquired directly from a three-dimensional (3D) opaque porous structure (sandstone) when viscoelastic fluctuations are expected to be present in the continuous phase. The measured increase in motion of trapped ganglia provides unequivocal evidence of fluctuations in the flowing phase in a fully complex 3D system. This work provides direct evidence of elastic turbulence in a realistic reservoir rock - a measurement that cannot be readily achieved by conventional laboratory methods. We support the NMR data with optical microscopy studies of fluctuating ganglia in simple two-dimensional (2D) microfluidic networks, with consistent apparent rheological behaviour of the aqueous phase, to provide conclusive evidence of elastic turbulence in the 3D structure and hence validate the proposed flow-fluctuation mechanism for enhanced oil recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据