4.6 Article

ANFIS and MPC controllers for a reconfigurable lower limb exoskeleton

期刊

SOFT COMPUTING
卷 21, 期 3, 页码 571-584

出版社

SPRINGER
DOI: 10.1007/s00500-016-2321-9

关键词

ANFIS; Model predictive controller; Exoskeleton; Integral errors; Artificial intelligence

资金

  1. Tecnologico de Monterrey

向作者/读者索取更多资源

The exoskeletons are robotic active orthoses intended to enhance power or in medical applications as rehabilitation and assistive walking. In the context of designing a controller for the reconfigurable exoskeleton for lower limb, it is critical to define the hardware as well as the control. The scope of this work was to define the controller for reconfigurable exoskeleton using three types of controllers: PD, ANFIS, and MPC. The PD controllers are the typical approach for torque/tracking control while artificial intelligence controller, as ANFIS, and optimal controller, as MPC, are recently entering to this field. The ANFIS and MPC controllers may bring more precision and capability to distribute the processing operations. Afterward, this work contrasts the performance evaluation using objective indices to evaluate the error, ISE, IAE, ITSE, ITAE, ISTSE, and ISTAE. The results suggest that ANFIS and MPC controllers have the potential to drive the torque/traction reducing the error while having the capability to learn from the disturbances from the surroundings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据