4.6 Article

Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization

期刊

SOFT COMPUTING
卷 21, 期 24, 页码 7251-7267

出版社

SPRINGER
DOI: 10.1007/s00500-016-2422-5

关键词

Evolutionary algorithms; Multi-objective optimization; Particle swarm optimization; Constraint handling; MOPSO

向作者/读者索取更多资源

This paper proposes an efficient approach for constraint handling in multi-objective particle swarm optimization. The particles population is divided into two non-overlapping populations, named infeasible population and feasible population. The evolution process in each population is done independent of the other one. The infeasible particles are evolved in the constraint space toward feasibility. During evolution process, if an infeasible particle becomes a feasible one, it migrates to feasible population. In a parallel process, the particles in feasible population are evolved in the objective space toward Pareto optimality. At each generation of multi-objective particle swarm optimization, a leader should be assigned to each particle to move toward it. In the proposed method, a different leader selection algorithm is proposed for each population. For feasible population, the leader is selected using a priority-based method in three levels and for infeasible population, a leader replacement method integrated by an elitism-based method is proposed. The proposed approach is tested on several constrained multi-objective optimization benchmark problems, and its results are compared with two popular state-of-the-art constraint handling multi-objective algorithms. The experimental results indicate that the proposed algorithm is highly competitive in solving the benchmark problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据