4.8 Article

Sequential Introduction of Cations Deriving Large-Grain CsxFA1-xPbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase-Segregation and Thermal-Healing Behavior

期刊

SMALL
卷 13, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201603225

关键词

-

资金

  1. Scientific and Technological Support Program in Jiangsu province [BE2014147-2]
  2. National Basic Research Program of China [2013CB922100]
  3. National Natural Science Foundation of China [201502088, 21631006, 21271099]
  4. Jiangsu Province Science Foundation for Youths [BK20150569]

向作者/读者索取更多资源

Composition engineering of perovskite materials has been demonstrated to be important for high-performance solar cells. Recently, the energy favorable hybridization of formamidinium (FA) and cesium (Cs) in three dimension lead halide perovskites has been attracting increasing attention due to its potential benefit on durability. Herein, we reported a simple and effective method to produce phase-pure CsxFA1-xPbI3 thin film via sequential introduction of cations, in which the FA cation was introduced by interdiffusion annealing in the presence of N-methylimidazole (NMI). NMI was employed as an additive to slow down the crystallization and thus drive the formation of CsxFA1-xPbI3 with micrometer grain size, which probably facilitate the charge dissociation and transportation in photovoltaic devices. More importantly, composition dependent phase-segregation has been revealed and investigated for the first time during the phase-pure mixed-cation perovskites CsxFA1xPbI3. The present findings demonstrated that suppressing phase-segregation of mixed-cation perovskites by meticulous composition engineering is significant for further development of efficient photovoltaics. It also suggested that phase-pure Cs0.15FA0.85PbI3 may be a promising candidate with superior phase-durability, which performed an efficiency over 16% in planar perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据