4.8 Article

A New Strategy for Humidity Independent Oxide Chemiresistors: Dynamic Self-Refreshing of In2O3 Sensing Surface Assisted by Layer-by-Layer Coated CeO2 Nanoclusters

期刊

SMALL
卷 12, 期 31, 页码 4229-4240

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201601507

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MEST) [2016R1A2A1A05005331]
  2. National Research Foundation of Korea [2016R1A2A1A05005331] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The humidity dependence of the gas sensing characteristics of metal oxide semiconductors has been one of the greatest obstacles for gas sensor applications during the last fi ve decades because ambient humidity dynamically changes with the environmental conditions. Herein, a new and novel strategy is reported to eliminate the humidity dependence of the gas sensing characteristics of oxide chemiresistors via dynamic self-refreshing of the sensing surface affected by water vapor chemisorption. The sensor resistance and gas response of pure In2O3 hollow spheres signifi cantly change and deteriorate in humid atmospheres. In contrast, the humidity dependence becomes negligible when an optimal concentration of CeO2 nanoclusters is uniformly loaded onto In2O3 hollow spheres via layer-by-layer (LBL) assembly. Moreover, In2O3 sensors LBL-coated with CeO2 nanoclusters show fast response/ recovery, low detection limit (500 ppb), and high selectivity to acetone even in highly humid conditions (relative humidity 80%). The mechanism underlying the dynamic refreshing of the In2O3 sensing surfaces regardless of humidity variation is investigated in relation to the role of CeO2 and the chemical interaction among CeO2, In2O3, and water vapor. This strategy can be widely used to design high performance gas sensors including disease diagnosis via breath analysis and pollutant monitoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据