4.6 Article

Incipient fault amplitude estimation using KL divergence with a probabilistic approach

期刊

SIGNAL PROCESSING
卷 120, 期 -, 页码 1-7

出版社

ELSEVIER
DOI: 10.1016/j.sigpro.2015.08.008

关键词

Fault estimation; Kullback-Leibler divergence; Principal component analysis

向作者/读者索取更多资源

The Kullback-Leibler (KL) divergence is at the centre of Information Theory and change detection. It is characterized with a high sensitivity to incipient faults that cause unpredictable small changes in the process measurements. This work yields an analytical model based on the KL divergence to estimate the incipient fault magnitude in multivariate processes. In practice, the divergence has no closed form and it must be numerically approximated. In the particular case of incipient fault, the numerical approximation of the divergence causes many false alarms and missed detections because of the slight effect of the incipient fault. In this paper, the ability and relevance to estimate the incipient fault amplitude using the numerical divergence is studied. The divergence is approximated through the calculation of discrete probabilities for faultless and faulty signals. The estimation results that are obtained by simulation induce an error lower than 1% on the fault amplitude. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据