4.7 Article

A hydrogel-based glucose affinity microsensor

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 237, 期 -, 页码 992-998

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2016.03.146

关键词

Affinity sensor; Continuous glucose monitoring; Hydrogel

资金

  1. National Institutes of Health (NIH) [1DP3DK101085-01]
  2. National Natural Science Foundation of China [61428402]

向作者/读者索取更多资源

We present a hydrogel-based affinity microsensor for continuous glucose measurements. The microsensor is based on microelectromechanical systems (MEMS) technology, and incorporates a synthetic hydrogel that is attached to the device surface via in situ polymerization. Glucose molecules that diffuse into and out of the device bind reversibly with boronic acid groups in the hydrogel via affinity binding, and causes changes in the dielectric properties of the hydrogel, which can be measured using a MEMS capacitive transducer to determine the glucose concentration. The use of the in situ polymerized hydrogel eliminates mechanical moving parts found in other types of affinity microsensors, as well as mechanical barriers such as semipermeable membranes that are otherwise required to hold the glucose-sensitive material. This facilitates the miniaturization and robust operation of the microsensor, and can potentially improve the tolerance of the device, when implanted subcutaneously, to biofouling. Experimental results demonstrate that in a glucose concentration range of 0-500 mg/dL and with a resolution of 0.35 mg/dL or better, the microsensor exhibits a repeatable and reversible response, and can potentially be useful for continuous glucose monitoring in diabetes care. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据