4.7 Article

A versatile lab-on-a-chip tool for modeling biological barriers

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 222, 期 -, 页码 1209-1219

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2015.07.110

关键词

Microfluidics; Lung and intestinal epithelial cells; Endothelial cells; Blood-brain barrier; Permeability; Trans-epithelial/endothelial electric resistance

资金

  1. OTKA [K-101821, NN-102624]
  2. Hungarian Academy of Sciences
  3. [TAMOP-4.2.2.A-11/1/KONV-2012-0047]

向作者/读者索取更多资源

Models of biological barriers are important to study physiological functions, transport mechanisms, drug delivery and pathologies. However, there are only a few integrated biochips which are able to monitor several of the crucial parameters of cell-culture-based barrier models. The aim of this study was to design and manufacture a simple but versatile device, which allows a complex investigation of barrier functions. The following functions and measurements are enabled simultaneously: co-culture of 2 or 3 types of cells; flow of culture medium; visualization of the entire cell layer by microscopy; real-time transcellular electrical resistance monitoring; permeability measurements. To this end, a poly(dimethylsiloxane)-based biochip with integrated transparent gold electrodes and with a possibility to connect to a peristaltic pump was built. Unlike previous systems, the structure of the device allowed a constant visual observation of cell growth over the whole membrane surface. Morphological characterization of the layers was also accomplished by immunohistochemical staining. The chip was applied to monitor and characterize models of the intestinal and lung epithelial barriers, and the blood-brain barrier. The models were established using human Caco-2 intestinal and A549 lung epithelial cell lines, hCMEC/D3 human brain endothelial cell line and primary rat brain endothelial cells co-cultured with primary astrocytes and brain pericytes. This triple primary co-culture blood-brain barrier model was assembled on a lab-on-a-chip device and investigated under fluid flow for the first time. Such a versatile tool is expected to facilitate the kinetic investigation of various biological barriers. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据