4.6 Article

CO Gas Sensing Properties of Pure and Cu-Incorporated SnO2 Nanoparticles: A Study of Cu-Induced Modifications

期刊

SENSORS
卷 16, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/s16081283

关键词

gas sensing; tin oxide; CO; copper; doping

向作者/读者索取更多资源

Pure and copper (Cu)-incorporated tin oxide (SnO2) pellet gas sensors with characteristics provoking gas sensitivity were fabricated and used for measuring carbon monoxide (CO) atmospheres. Non-spherical pure SnO2 nano-structures were prepared by using urea as the precipitation agent. The resultant SnO2 powders were ball milled and incorporated with a transition metal, Cu, via chemical synthesis method. The incorporation is confirmed by high-resolution transmission electron microscope (HRTEM) analysis. By utilizing Cu -incorporated SnO2 pellets an increase in the CO sensitivity by an order of three, and a decrease in the response and recovery times by an order of two, were obtained. This improvement in the sensitivity is due to two factors that arise due to Cu incorporation: necks between the microparticles and stacking faults in the grains. These two factors increased the conductivity and oxygen adsorption, respectively, at the pellets' surface of SnO2 which, in turn, raised the CO sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据