4.7 Article

Bioengineering Human Myocardium on Native Extracellular Matrix

期刊

CIRCULATION RESEARCH
卷 118, 期 1, 页码 56-72

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.115.306874

关键词

cardiomyocytes; extracellular matrix; induced pluripotent stem cells; regeneration

资金

  1. US National Institutes of Health [DP2 OD008749-01]
  2. National Heart Lung and Blood Institute [R21 HL108663-2, R01 HL115282]

向作者/读者索取更多资源

Rationale: More than 25 million individuals have heart failure worldwide, with approximate to 4000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only approximate to 2500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective: The objective of this study is to translate previous work to human scale and clinically relevant cells for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human induced pluripotent stem cell-derived cardiomyocytes. Methods and Results: To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiomyocytes derived from nontransgenic human induced pluripotent stem cells and generated tissues of increasing 3-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole-heart scaffolds with human induced pluripotent stem cell-derived cardiomyocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue and showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions: Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human induced pluripotent stem cell-derived cardiomyocytes and enable the bioengineering of functional human myocardial-like tissue of multiple complexities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据