4.3 Article

Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

期刊

SCIENTIA AGRICOLA
卷 73, 期 1, 页码 43-50

出版社

UNIV SAO PAULO, ESALQ
DOI: 10.1590/0103-9016-2015-0050

关键词

greenhouse gases; emissions; methane; nitrous oxide; mitigation

向作者/读者索取更多资源

Water management impacts both methane (CH4) and nitrous oxide (N2O) emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4 emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30); and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI). AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha(-1), 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments (p > 0.05). No yield differences between irrigation systems were observed in two of the rice seasons (p > 0.05) while AWDI promoted yield reduction in one of the seasons (p < 0.05). When rice yield and greenhouse gases (GHG) emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP). Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据