4.7 Article

Traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 573, 期 -, 页码 915-923

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2016.08.128

关键词

Traffic-related metal(loid)s; Qinghai-Tibet highway; Dominant plant; Distribution

资金

  1. National Natural Science Foundation of China [40801042, 90202012]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB03030500]

向作者/读者索取更多资源

To understand traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China, aboveground parts and root samples of three dominant plant species (Kalidium slenderbranch, Stipa purpurea, Kobresia pygmaea) were collected along the Qinghai-Tibet highway, and were analyzed for concentrations of traffic-related metal(loid)s such as chromium (Cr), zinc (Zn), copper (Cu), cadmium (Cd), arsenic (As), and lead (Pb). The results indicated that concentrations of metal(loid)s in plant tissues varied greatly among plant species and sites. Tissue distribution of metal(loid)s was significantly related to distance and demonstrated variability as an exponential function of traffic proximity. It was deduced that Cd in Kalidium slenderbranch and Cu and Zn in S. purpurea were mainly derived from soil; Kalidium slenderbranch and Kobresia pygmaea absorbed Zn, and S. purpurea absorbed Cd, mainly through stomata, from atmospheric deposition; enrichments of Pb and As in S. purpurea presented similar characteristics to those of Cd and Pb in Kobresia pygmaea and were affected by both soil and atmospheric deposition. After excluding the effects of the traffic, the highest value obtained for metal( loid)-translocation capacity (7.51 for translocation factor, TF) was observed for S. purpurea collected from Tuotuohe, while the lowest value for metal(loid)-uptake capacity (0.015 for bioaccumulation factor, BF) was for Kalidium slenderbranch collected from Golmud. The three plant species showed limited soil-to-root transfer of metal(loid)s, possibly due to the high soil pH along the Qinghai-Tibet highway, but demonstrated great potential for metal(loid) transfer from roots to aboveground parts. (C) 2016 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据