4.7 Article

Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 573, 期 -, 页码 1031-1040

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2016.08.179

关键词

PM2.5; Chemical composition; Thermodynamic equilibrium model; Aerosol mass closure; Source apportionment

资金

  1. Gansu Minsheng Research Funds [1503FCMA003]
  2. Fundamental Research Funds for Central Universities [lzujbky-2013-m03, lzujbky-2016-262, lzujbky-2016-249, lzujbky-2016-253]

向作者/读者索取更多资源

Daily PM2.5 samples were collected in 2014 at a suburban petrochemical industrial site and a downtown site in Lanzhou city, Northwest China. Major chemical components in PM2.5, including water-soluble ions, metal elements, and organic and elemental carbon (OC and EC) were determined. The chemical mass closure method and the ISORROPIA II thermodynamic equilibrium model were used to reconstruct PM2.5 mass and quantify the combinations of NH4+, SO42- and NO3- to PM2.5. Positive matrix factorization (PMF) model was employed to apportion potential sources of PM2.5. The annual average PM2.5 concentration was 93.7 +/- 49.6 mu g m(-3) at the suburban petrochemical industrial site and 88.9 +/- 52.0 mu g m(-3) at the urban site, with the highest seasonal average in winter and the lowest in summer at both sites. Mineral dust was identified as the highest contributor to PM2.5 in spring, while water-soluble inorganic ions and carbonaceous aerosols were the dominant chemical components in other seasons. The correlation relationships between OC and EC and between K+ and EC suggested that coal combustion and vehicle exhaust were the major sources of carbonaceous aerosols in Lanzhou. Six major sources were identified by the PMF model. Coal combustion, soil dust, traffic emissions, and secondary inorganic aerosols were the dominant contributors, together accounting for 82% of PM2.5 mass. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据