4.7 Article

Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 566, 期 -, 页码 536-551

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2016.05.126

关键词

Magnetic susceptibility; Technogenic magnetic particles; Historical soil pollution; Heavy metals; Peat bogs

资金

  1. Polish National Science Centre [2012/05/B/ST10/01053]

向作者/读者索取更多资源

In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (kappa) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25 cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据