4.7 Article

Mining-Induced Coal Permeability Change Under Different Mining Layouts

期刊

ROCK MECHANICS AND ROCK ENGINEERING
卷 49, 期 9, 页码 3753-3768

出版社

SPRINGER WIEN
DOI: 10.1007/s00603-016-0979-z

关键词

Coal; Mining; induced permeability change ratio; Mining layout; Coal bed methane; Mechanical property

资金

  1. State Key Basic Research Program of China [2011CB201201]
  2. National Natural Science Foundation of China [51204113, 51134018, 51104101]

向作者/读者索取更多资源

To comprehensively understand the mining-induced coal permeability change, a series of laboratory unloading experiments are conducted based on a simplifying assumption of the actual mining-induced stress evolution processes of three typical longwall mining layouts in China, i.e., non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM). A theoretical expression of the mining-induced permeability change ratio (MPCR) is derived and validated by laboratory experiments and in situ observations. The mining-induced coal permeability variation under the three typical mining layouts is quantitatively analyzed using the MPCR based on the test results. The experimental results show that the mining-induced stress evolution processes of different mining layouts do have an influence on the mechanical behavior and evolution of MPCR of coal. The coal mass in the PCM simulation has the lowest stress concentration but the highest peak MPCR (approximately 4000 %), whereas the opposite trends are observed for the coal mass under NM. The results of the coal mass under TCM fall between those for PCM and NM. The evolution of the MPCR of coal under different layouts can be divided into three sections, i.e., stable increasing section, accelerated increasing section and reducing section, but the evolution processes are slightly different for the different mining layouts. A coal bed gas intensive extraction region is recommended based on the MPCR distribution of coal seams obtained by simplifying assumptions and the laboratory testing results. The presented results are also compared with existing conventional triaxial compression test results to fully comprehend the effect of actual mining-induced stress evolution on coal property tests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据