4.7 Review

Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review

期刊

REVIEWS OF GEOPHYSICS
卷 54, 期 1, 页码 5-63

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015RG000493

关键词

Atlantic Meridional Overturning Circulation; climate variability

资金

  1. NOAA [NA10OAR4310199, NA13OAR4310134, NA150AR4310100, NA09OAR4310058, NA14OAR4310160]
  2. NSF [1338427]
  3. NASA [NNX14AM19G]
  4. NASA MAPP program
  5. U.S. AMOC program
  6. U.S. AMOC Science Teams
  7. Directorate For Geosciences
  8. Div Atmospheric & Geospace Sciences [1338427] Funding Source: National Science Foundation

向作者/读者索取更多资源

This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western transition zone along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data. Key Points Intra-annual AMOC variability is large and forced by the wind Decadal AMOC variability is associated with density variations on the ocean boundaries The subtropical-subpolar transition zone is a pacemaker for decadal AMOC variability

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据