4.5 Article

Low vibration high numerical aperture automated variable temperature Raman microscope

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 87, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4944559

关键词

-

资金

  1. NSERC
  2. CFI
  3. ORF
  4. National Science Foundation [DMR-1410846]
  5. AFOSR [FA9550-12-1-0381]
  6. National Security Science and Engineering Faculty Fellowship (NSSEFF)
  7. [DE-SC00112704]
  8. Division Of Materials Research
  9. Direct For Mathematical & Physical Scien [1410846] Funding Source: National Science Foundation

向作者/读者索取更多资源

Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to a wide range of areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instabilities as well as low collection efficiencies. Thus contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarization rotation. High collection efficiency, thermal stability, and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi2Se3 and V2O3, which are challenging due to low thermal conductivities, low signal levels, and/or hysteretic effects, are measured with previously undemonstrated temperature resolution. (C) 2016 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据