4.7 Article

Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage

期刊

RENEWABLE ENERGY
卷 85, 期 -, 页码 387-394

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2015.06.056

关键词

Acid treated MWCNTs; MWCNT/h-EN nanocomposites; Micro-Raman spectroscopy; Hydrogen storage

资金

  1. University Grants Commission of India under UGC-MRP [41-893/2012(SR)]

向作者/读者索取更多资源

Hydrogen is considered as the most promising clean energy carrier because of its abundance, environmental friendliness and high conversion efficiency. However, developing safe, compact, light weight and cost-effective hydrogen storage materials is one of the most technically challenging barriers to the widespread use of hydrogen as fuel. The present work reports the hydrogen storage performance of multi-walled carbon nanotubes (MWCNT)/hexagonal boron nitride (h-BN) nanocomposites (MWCNT/h-BN), where ultrasonication method is adopted for the synthesis of the MWCNT/h-BN nanocomposites. Hydrogenation process was carried out using Seiverts-like hydrogenation setup. Characterization techniques such as X-ray Diffraction (XRD), Micro-Raman Spectroscopy, Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Nitrogen adsorption desorption isothermal studies (BET), CHN-elemental analysis and Thermogravimetric Analysis (TGA) were used to analyze the samples at various stages of the experiment. A maximum of 2.3 wt% hydrogen storage is achieved in the case of acid treated IVIWCNTs (A-MWCNT) with 5 wt% of h-BN nanoparticles compared to pure MWCNTs that could store 0.15 wt% only. Moreover the calculated binding energy (0.42 eV) of stored hydrogen of A-MWCNT with 5 wt% of h-BN nanocomposite lies in the recommended range of binding energy (0.2-0.6 eV) for fuel cell applications. The TG study shows that 100% desorption is achieved at the temperature range of 120-410 degrees C and confirms that the prepared hydrogen storage medium will serve effectively in the realm of hydrogen fuel economy in near future. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据