4.7 Article

Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States

期刊

REMOTE SENSING OF ENVIRONMENT
卷 186, 期 -, 页码 275-285

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2016.08.023

关键词

Landsat; Wildfire; Fire refugia; Unburned areas; Unburned islands; Fire severity

资金

  1. USFS Western Wildlands Environmental Threat Assessment Center [13JV-11261900-072]
  2. NSF [EPS-0814387]
  3. Department of the Interior Northwest Climate Science Center (NW CSC) from the United States Geological Survey (USGS) [G14AP00177]

向作者/读者索取更多资源

Wildfires shape the distribution and structure of vegetation across the inland northwestern United States. However, fire activity is expected to increase given the current rate of climate change, with uncertain outcomes. A fire impact that has not been widely addressed is the development of unburned islands; areas within the fire perimeter that do not burn. These areas function as critical ecological refugia for biota during or following wildfires, but they have been largely ignored in methodological studies of remote sensing assessing fire severity under the assumption that they will be detected by algorithms for delineating fire perimeters. Our objective was to develop a model for classifying unburned areas within wildfire perimeters using moderate resolution satellite (i.e., Landsat) and ancillary data. We performed field observations at locations that were unburned or lightly burned within the perimeters of 12 wildfires that burned in 2012 and 2014, and augmented this with field data previously acquired on another seven wildfires across the study region. We used randomForest and classification trees to separate burned from unburned locations with high overall classification accuracy (91.7% and 89.2%, for randomForest and classification tree methods respectively). Classification accuracy was significantly higher than the semi-automated classification products from the Monitoring Trends in Burn Severity (MTBS) program. After application of the most parsimonious and accurate classification tree model, we found that the average unburned proportion of the fires was 20% with high variability between fires (standard deviation: 16.4%). The total area of unburned islands in non-forested areas was significantly higher than the total unburned area in forested areas. Accurate detection and delineation of unburned areas is increasingly critical, as some of these unburned areas contain habitat (i.e., wildfire refugia) that are crucial for maintaining biodiversity and functioning of ecosystems, particularly given observed and projected anthropogenic climate change. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据