4.5 Article

How to talk about protein-level false discovery rates in shotgun proteomics

期刊

PROTEOMICS
卷 16, 期 18, 页码 2461-2469

出版社

WILEY-BLACKWELL
DOI: 10.1002/pmic.201500431

关键词

Bioinformatics; Data processing and analysis; Mass spectrometry-LC-MS/MS; Protein inference; Simulation; Statistical analysis

向作者/读者索取更多资源

A frequently sought output from a shotgun proteomics experiment is a list of proteins that we believe to have been present in the analyzed sample before proteolytic digestion. The standard technique to control for errors in such lists is to enforce a preset threshold for the false discovery rate (FDR). Many consider protein-level FDRs a difficult and vague concept, as the measurement entities, spectra, are manifestations of peptides and not proteins. Here, we argue that this confusion is unnecessary and provide a framework on how to think about protein-level FDRs, starting from its basic principle: the null hypothesis. Specifically, we point out that two competing null hypotheses are used concurrently in today's protein inference methods, which has gone unnoticed by many. Using simulations of a shotgun proteomics experiment, we show how confusing one null hypothesis for the other can lead to serious discrepancies in the FDR. Furthermore, we demonstrate how the same simulations can be used to verify FDR estimates of protein inference methods. In particular, we show that, for a simple protein inference method, decoy models can be used to accurately estimate protein-level FDRs for both competing null hypotheses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据