4.5 Review

Proton exchange reactions in SiOx-based resistive switching memory: Review and insights from impedance spectroscopy

期刊

PROGRESS IN SOLID STATE CHEMISTRY
卷 44, 期 3, 页码 75-85

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progsolidstchem.2016.07.001

关键词

Proton exchange; Resistive switching; Silicon oxide; Non-polar; RRAM

向作者/读者索取更多资源

In this work, the AC admittance and conductance of non-polar SiOx-based resistive switching memory devices is measured as a function of temperature to investigate charge transport and potential switching mechanisms. After electroforming using a forward/backward voltage scan, devices were measured over the frequency range of 1 k-1 MHz and the temperature range of 200-400 K. For temperature (T) > 300 K, AC conductance follows sigma(omega) = A omega(s), where s is linearly dependent on temperature and close to, but less than, unity. For T < 300 K, sigma(omega) is almost temperature-independent with s similar to 1. A classical hopping model and AC impedance spectroscopy measurements are found to provide reasonable explanations of the experimental data. Defect concentration is estimated to be 1-5 x 10(19) cm(-3) and independent of device resistive state when modeling charge transport using a polaron hopping characteristic. The energy barrier to electron hopping is estimated to change from 0.1 eV to 0.6 eV and the average hopping distance varies from 1 nm to 6 nm when the device is switched between low- and high-resistance states, respectively. Device switching mechanisms are modeled by simple proton exchange reactions that both activate and deactivate the defects involved in change transport. The impedance spectroscopy results supporting hole-like polaron hopping and the values obtained for the physical parameters provide additional insights into the fundamental mechanisms of SiOx-based resistive memory. Uniform switching performance with robust high temperature reliability and fast operating speed demonstrate good potential for future nonvolatile memory applications. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据