4.7 Article

Accelerated development of CuSbS2 thin film photovoltaic device prototypes

期刊

PROGRESS IN PHOTOVOLTAICS
卷 24, 期 7, 页码 929-939

出版社

WILEY
DOI: 10.1002/pip.2735

关键词

combinatorial; CuSbS2; chalcogenide; thin film; earth abundant; sputtering

资金

  1. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, as a part of the SunShot initiative [DE-AC36-08GO28308]
  2. Department of Defense

向作者/读者索取更多资源

Development of alternative thin film photovoltaic technologies is an important research topic because of the potential of low-cost, high-efficiency solar cells to produce terawatt levels of clean power. However, this development of unexplored yet promising absorbers can be hindered by complications that arise during solar cell fabrication. Here, a high-throughput combinatorial method is applied to accelerate development of photovoltaic devices, in this case, using the novel CuSbS2 absorber via a newly developed three-stage self-regulated growth process to control absorber purity and orientation. Photovoltaic performance of the absorber, using the typical substrate CuInxGa1-xSe2 (CIGS) device architecture, is explored as a function of absorber quality and thickness using a variety of back contacts. This study yields CuSbS2 device prototypes with similar to 1% conversion efficiency, suggesting that the optimal CuSbS2 device fabrication parameters and contact selection criteria are quite different than for CIGS, despite the similarity of these two absorbers. The CuSbS2 device efficiency is at present limited by low short-circuit current because of bulk recombination related to defects, and a small open-circuit voltage because of a theoretically predicted cliff-type conduction band offset between CuSbS2 and CdS. Overall, these results illustrate both the potential and limits of combinatorial methods to accelerate the development of thin film photovoltaic devices using novel absorbers. Copyright (c) 2016 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据