4.7 Article

Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions

期刊

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
卷 100, 期 -, 页码 131-141

出版社

ELSEVIER
DOI: 10.1016/j.psep.2016.01.007

关键词

COD removal; Nitrification; MBBR; Carrier media; Organic loading rate; Specific nitrification rate

资金

  1. CNPq
  2. CAPES

向作者/读者索取更多资源

In this study, two moving-bed biofilm reactors (MBBR1 and MBBR2) filled with different carrier media (Kaldnes K1 and Mutag Biochip, respectively) were subjected to increasing organic loading rates for 700 days. Regardless of the carrier used, both systems could withstand high organic loads up to 3.2 kgCOD/(m(3) d), condition under which complete ammonium removal was achieved. However, the type of media influenced the quantity and distribution of attached biomass in the support, which in turn affected the activity of specific microbial functional groups in the biofilm. As the chemical oxygen demand (COD) input was gradually increased, the biofilm got thicker and the surface detachment rates were enhanced. Consequently, the amount of suspended solids has increased considerably to levels commonly found in hybrid bioreactors. Activity batch tests have shown that the contribution of the bulk phase biomass to the overall nitrification was very significant, being more relevant as the biofilm sloughing events became more intense. At constant organic loading rate, the hydraulic retention time (HRT) had a noticeable impact on the nitrification process, as it directly influenced the fraction of ammonium oxidized either by the attached or suspended biomass. Total nitrogen removal amounted up to 86 and 73% in MBBR1. and MBBR2, respectively. (C) 2016 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据