4.8 Article

Linking freshwater fishery management to global food security and biodiversity conservation

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1521540113

关键词

fish diversity; subsistence fishery; fishing pressure; rivers; ecosystem services

资金

  1. University of Wisconsin
  2. Packard Fellowship
  3. National Science Foundation [DEB-1115025]
  4. Directorate For Geosciences
  5. ICER [1450554] Funding Source: National Science Foundation
  6. Directorate For Geosciences
  7. ICER [1450657] Funding Source: National Science Foundation

向作者/读者索取更多资源

Fisheries are an essential ecosystem service, but catches from fresh-waters are often overlooked. Hundreds of millions of people around the world benefit from low-cost protein, recreation, and commerce provided by freshwater fisheries, particularly in regions where alternative sources of nutrition and employment are scarce. Here, we derive a gridded global map of riverine fisheries and assess its implications for biodiversity conservation, fishery sustainability, and food security. Catches increase with river discharge and human population density, and 90% of global catch comes from river basins with above-average stress levels. Fish richness and catches are positively but not causally correlated, revealing that fishing pressure is most intense in rivers where potential impacts on biodiversity are highest. Merging our catch analysis with nutritional and socioeconomic data, we find that freshwater fisheries provide the equivalent of all dietary animal protein for 158 million people. Poor and undernourished populations are particularly reliant on inland fisheries compared with marine or aquaculture sources. The spatial coincidence of productive freshwater fisheries and low food security highlights the critical role of rivers and lakes in providing locally sourced, low-cost protein. At the same time, intensive fishing in regions where rivers are already degraded by other stressors may undermine efforts to conserve biodiversity. This syndrome of poverty, nutritional deficiency, fishery dependence, and extrinsic threats to biodiverse river ecosystems underscores the high stakes for improving fishery management. Our enhanced spatial data on estimated catches can facilitate the inclusion of inland fisheries in environmental planning to protect both food security and species diversity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据