4.8 Article

Architectural transitions in Vibrio cholerae biofilms at single-cell resolution

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1601702113

关键词

biofilm; community; self-organization; emergent order; nematic order

资金

  1. Howard Hughes Medical Institute
  2. National Institutes of Health [GM065859]
  3. National Science Foundation [MCB-0948112, MCB-1119232, MCB-1344191]
  4. Max Planck Society
  5. Human Frontier Science Program
  6. Deutsche Forschungsgemeinschaft [SPP1617]
  7. Alfred P. Sloan Foundation
  8. Alexander von Humboldt Foundation
  9. Direct For Biological Sciences
  10. Div Of Molecular and Cellular Bioscience [0948112] Funding Source: National Science Foundation

向作者/读者索取更多资源

Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据