4.8 Article

Decanalization of wing development accompanied the evolution of large wings in high- altitude Drosophila

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1515964113

关键词

developmental canalization; adaptive evolution; Drosophila melanogaster; wing; genetic robustness

资金

  1. National Institutes of Health [R01 GM111797]
  2. Ruth L. Kirschstein National Research Service Award [F32 GM106594]

向作者/读者索取更多资源

In higher organisms, the phenotypic impacts of potentially harmful or beneficial mutations are often modulated by complex developmental networks. Stabilizing selection may favor the evolution of developmental canalization-that is, robustness despite perturbation-to insulate development against environmental and genetic variability. In contrast, directional selection acts to alter the developmental process, possibly undermining the molecular mechanisms that buffer a trait's development, but this scenario has not been shown in nature. Here, we examined the developmental consequences of size increase in highland Ethiopian Drosophila melanogaster. Ethiopian inbred strains exhibited much higher frequencies of wing abnormalities than lowland populations, consistent with an elevated susceptibility to the genetic perturbation of inbreeding. We then used mutagenesis to test whether Ethiopian wing development is, indeed, decanalized. Ethiopian strains were far more susceptible to this genetic disruption of development, yielding 26 times more novel wing abnormalities than lowland strains in F2 males. Wing size and developmental perturbability cosegregated in the offspring of between-population crosses, suggesting that genes conferring size differences had undermined developmental buffering mechanisms. Our findings represent the first observation, to our knowledge, of morphological evolution associated with decanalization in the same tissue, underscoring the sensitivity of development to adaptive change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据