4.8 Article

p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1603435113

关键词

p53 antiviral activity; SARS-CoV SUD; papain-like protease; E3 ubiquitin ligase RCHY1; coronavirus replication

资金

  1. German Center for Infection Research [8025801803]
  2. Lubeck Project [8000 204-3]
  3. Bundesministerium fur Bildung und Forschung of the German Government, Zoonosis Network, Consortium on Ecology and Pathogenesis of SARS Project [01KI1005A, 01KI1005F]

向作者/读者索取更多资源

Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PLpro), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PLpro fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PLpro alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据