4.8 Article

Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1608828113

关键词

Plasmodium; malaria; vivax; transcription; genome

资金

  1. NIH [R01AI089819, R21AI111108, R01AI099473, T32GM007092, T32GM008719, F30AI109979, K08AI110651]

向作者/读者索取更多资源

Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P. vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P. vivax and 80 P. falciparum isolates collected between 2009 and 2013. We found that although P. falciparum has undergone population fracturing, the coendemic P. vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P. falciparum, P. vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P. vivax and P. falciparum parasites. Although population substructuring in P. falciparum has resulted in clonal outgrowths of resistant parasites, P. vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P. vivax's resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P. vivax and achieve malaria elimination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据