4.5 Article

Size effects in finish machining of porous powdered metal for engineered surface quality

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2015.12.004

关键词

Cryogenic machining; Critical chip thickness; Surface integrity; Size effects; Powder metal; Porous tungsten; Sustainable

资金

  1. Ceradyne Inc., a 3M Company

向作者/读者索取更多资源

Porous tungsten is conventionally machined with the aid of a plastic infiltrant to achieve acceptable surface finish. For dispenser cathode application, both high surface porosity and low surface roughness are necessary. Cryogenic machining has already been demonstrated to be capable of eliminating the need for plastic infiltration by greatly reducing smearing of pores. In order to address the problem of undesirable brittle fracture during cryogenic machining, the importance of uncut chip geometry is investigated. The value of critical chip thickness, beyond which brittle fracture occurs, is found to be closely linked to the microstructure of the workpiece material. While machining with very low uncut chip thickness leads to ploughing and spalling of the workpiece surface, ductile mode machining of porous tungsten with cryogenic cooling is found to yield excellent surface quality. When the maximum uncut chip thickness is approximately equal to the average ligament diameter of 80% density porous tungsten (d approximate to 8-9 mu m), ductile mode machining is possible under both dry and cryogenic conditions. Changes in shock compaction behavior of the workpiece material, leading to altered physical properties, is hypothesized to be the underlying mechanism of ductile mode machining of porous tungsten. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据