4.7 Article

Particle-based simulation of powder application in additive manufacturing

期刊

POWDER TECHNOLOGY
卷 288, 期 -, 页码 96-102

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2015.10.035

关键词

Additive manufacturing; Numerical simulation; Discrete element method

资金

  1. German Research Foundation (DFG) through Cluster of Excellence Engineering of Advanced Materials
  2. German Research Foundation (DFG) through Collaborative Research Initiative Additive Manufacturing [SFB814]

向作者/读者索取更多资源

The development of reliable strategies to optimize part production in additive manufacturing technologies hinges, to a large extent, on the quantitative understanding of the mechanical behavior of the powder particles during the application process. Since it is difficult to acquire this understanding based on experiments alone, a particle-based numerical tool for the simulation of powder application is required. In the present work, we develop such a numerical tool and apply it to investigate the characteristics of the powder layer deposited onto the part using a roller as the coating system. In our simulations, the complex geometric shapes of the powder particles are taken explicitly into account. Our results show that increasing the coating speed leads to an increase in the surface roughness of the powder bed, which is known to affect part quality. We also find that, surprisingly, powders with broader size distributions may lead to larger values of surface roughness as the smallest particles are most prone to form large agglomerates thus increasing the packing's porosity. Moreover, we find that the load on the part may vary over an order of magnitude during the coating process owing to the strong inhomogeneity of inter-particle forces in the granular packing. Our numerical tool can be used to assist - and partially replace - experimental investigations of the flowability and packing behavior of different powder systems as a function of material and process parameters. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据