4.5 Article

Synthesis and studies of thermal, mechanical and electrical properties of MWCNT-cyclodextrin as a nanoparticle in polyamide matrix based on 2,2-Bis[4-(4-aminophenoxy)phenyl] propane

期刊

POLYMERS FOR ADVANCED TECHNOLOGIES
卷 28, 期 7, 页码 779-790

出版社

WILEY
DOI: 10.1002/pat.3978

关键词

polyamide; film; mechanical properties; nanocomposite

向作者/读者索取更多资源

In the present research, polyamide (PA) (6) was synthesized by the polycondensation reaction of 2,2-Bis[4-(4-aminophenoxy)phenyl] propane as a diamine (4) with adipic acid (5) in the optimized condition. The resulting PA was characterized using Fourier transform infrared spectroscopy, Proton Nuclear Magnetic Resonance (H-1 NMR) spectroscopy, inherent viscosity ((inh)), X-ray diffraction, and solubility tests. Also, the thermal property of the new PA (6) was investigated by using Thermogravimetric analysis. To apply multiwall carbon nanotube (MWCNT) as an effective reinforcement in polymer composites, it is essential to have appropriate proper dispersion, interfacial adhesion between the MWCNT and polymer matrix, and increasing solubility. With this end particularly, functionalized MWCNTs were combined with a soluble molecule, and a series of modified MWCNT with cyclodextrin (Cy) known as PA/MWCNT-Cy composite film (2, 5, and 8wt%) were prepared by a solution intercalation technique. Field emission scanning electron microscopy images showed that MWCNT-Cy was well dispersed in the PA matrix. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared with the pristine PA. Anisotropic structure of the synthesized films and dispersed MWCNT-Cy in the films approved by use of X-ray diffraction and field emission scanning electron microscopy. The resultant PA/MWCNT-Cy composite films were electrically conductive, which is favorable for many practical uses. Measurements of mechanical properties of these composite films showed high strength in 8% MWCNT-Cy content. Also, results showed increases in Young's modulus and tensile strength. Copyright (c) 2016 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据