4.5 Article

Lithium purification from aqueous solutions using bioinspired redox-active melanin membranes

期刊

POLYMER INTERNATIONAL
卷 65, 期 11, 页码 1331-1338

出版社

WILEY-BLACKWELL
DOI: 10.1002/pi.5184

关键词

melanin; catechol; lithium; battery; electrochemistry

资金

  1. American Chemical Society [PRF51980DN17]
  2. Carnegie Mellon University School of Engineering
  3. CMU Center for Technology Transfer and Enterprise Creation
  4. Pennsylvania Department of Community and Economic Development
  5. Innovation Works (Pittsburgh, PA)
  6. Department of Energy [DE-OE0000226]

向作者/读者索取更多资源

The separation of lithium from magnesium ions in salt brines is an important step in producing raw lithium for prospective use in electrochemical storage systems. Liquid-liquid extraction of Mg2+ ions from Li+ ions is challenging because of comparable thermodynamic behavior in aqueous solutions. Removing Mg2+ ions from brines using consumable ion-exchange membranes is also a challenging prospect due to poor chemical selectivity and compromised sustainability. Here, we propose the use of redox-active catechols in the form of melanin pigments for selective removal of Mg2+ ions from aqueous solutions. Synthetic melanin films are oxidatively polymerized on stainless steel meshes from aqueous solutions of dopamine precursors to create electrochemically functionalized polydopamine membranes. The binding selectivity of redox-active catechol-bearing polydopamine melanin for Mg2+ ions in aqueous solutions was measured as a function of electrochemical cycling. The binding kinetics of Mg2+ ions to polydopamine pigments was measured. Mg2+ ions binding selectivity to polydopamine in mixed aqueous solutions containing both Li+ and Mg2+ ions were also measured. Additionally, the equilibrium binding concentrations of Mg2+ ions to polydopamine were achieved very rapidly (<1min). Redox-active polydopamine membranes therefore show promise as functional materials for the separation of Mg2+ and Li+ ions in aqueous solutions. (c) 2016 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据