4.7 Article

Effect of Process Parameters on Fracture Toughness of PP/EPDM/Nanoclay Nanocomposite Fabricated by Novel Method of Heat Assisted Friction Stir Processing

期刊

POLYMER COMPOSITES
卷 39, 期 7, 页码 2336-2346

出版社

WILEY
DOI: 10.1002/pc.24214

关键词

-

向作者/读者索取更多资源

Thermoplastic elastomeric nanocomposites due to their excellent mechanical, thermal, and chemical properties have a wide application in airplane, shipbuilding, and automotive industries and medical apparatus. Friction stir processing (FSP) is a novel technique for the fabrication of composites, nanocomposites and microstructural modifications. In this paper, polypropylene/ethylene-propylene-diene monomer (PP/EPDM) nanocomposite with 5 wt% nanoclay are fabricated by FSP to determine the effect of process parameters such as tool rotational speed, traverse speed, shoulder temperature, and number of passes on total work of fracture of this nanocomposite. Response surface methodology (RSM) and Box-Behnken design were used to develop a mathematical model relating the process parameters to the total work of fracture. The results show that the total work of fracture increased with increasing the rotational speed and number of passes and decreasing the shoulder temperature. A maximum total work of fracture of 50.3 N/mm was obtained at traverse speed of 42 mm/min when other parameters were at their center level. The maximum total work of fracture of 61.8 N/mm is achieved at rotational speed of 1,200 rpm, traverse speed of 40 mm/min, shoulder temperature of 100 degrees C, and number of passes of 3. (C) 2016 Society of Plastics Engineers

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据