4.7 Article

Analysis of flow induced crystallization through molecular stretch

期刊

POLYMER
卷 105, 期 -, 页码 187-194

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2016.10.026

关键词

Nucleation and growth rates; Shear flow; Flow-induced crystallization

向作者/读者索取更多资源

In this work, specific experiments on an isotactic polypropylene are carried out, aiming to investigate the flow induced crystallization and the final morphology. The viscoelastic nature of the polymer is described by a non-linear Maxwell model applied to the conformation tensor. Shear stress evolutions, recorded during step shear isothermal experiments, are satisfactory described considering the molecular stretch, i.e. the difference between the two main eigenvalues of the conformation tensor. In the general model, the effect of temperature, pressure, and crystallinity are taken into account. Furthermore, a modeling framework is proposed to describe flow-induced crystallization of isotactic polypropylene. The spherulitic growth rate is analyzed on the basis of a flow dependent equilibrium melting temperature, using the molecular stretch as the key parameter. A phenomenological correlation of the nucleation rate with growth rate is observed. By combining the morphological models, both for nucleation and growth rate, for flow induced crystallization is possible to explain the effect of shear rate and shearing times in different experimental results, and potentially in the simulation of polymer processing. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据