4.6 Article

The Effect of Nitrogen Deposition on Plant Performance and Community Structure: Is It Life Stage Specific?

期刊

PLOS ONE
卷 11, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0156685

关键词

-

资金

  1. Jastro Shields Scholarship from the College of Agriculture and Environmental Sciences, University of California Davis
  2. Department of Plant Sciences, University of California Davis

向作者/读者索取更多资源

Nitrogen (N) deposition is a key global change factor that is increasing and affecting the structure and function of many ecosystems. To determine the influence of N deposition on specific systems, however, it is crucial to understand the temporal and spatial patterns of deposition as well as the response to that deposition. Response of the receiving plant communities may depend on the life stage-specific performance of individual species. We focus on the California oak savanna because N deposition to this system is complex-characterized by hotspots on the landscape and seasonal pulses. In a greenhouse experiment, we investigated the relative influence of N deposition on plant performance during early growth, peak biomass, and senescent life stages across different soil types, light, and community compositions. To represent the community we used three grass species-a native, naturalized exotic, and invasive exotic. At early growth and peak biomass stages performance was measured as height, and shoot and root biomass, and at the senescent stage as seed production. Simulated N deposition 1) increased shoot biomass and height of the native and, even more so, the naturalized exotic during early growth, 2) positively affected root biomass in all species during peak biomass, and 3) had no influence on seed production at the senescent stage. Alone, N deposition was not a strong driver of plant performance; however, small differences in performance among species in response to N deposition could affect community composition in future years. In particular, if there is a pulse of N deposition during the early growth stage, the naturalized exotic may have a competitive advantage that could result in its spread. Including spatial and temporal heterogeneity in a complex, manipulative experiment provides a clearer picture of not only where N management efforts should be targeted on the landscape, but also when.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据