4.6 Article

Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

期刊

PLOS ONE
卷 11, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0159526

关键词

-

资金

  1. American Society of Nephrology Ben J. Lipps Research Fellowship
  2. National Institute of Diabetes, and Digestive, and Kidney Diseases of the National Institutes of Health [F32 DK103468]
  3. National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health [R01 EB014315, U01EB021214]
  4. Wildwood Foundation
  5. John and Marcia Goldman Foundation
  6. H-Cubed
  7. Ben Chui Consulting

向作者/读者索取更多资源

Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm(2) and 2.02 cm(2), respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据