4.6 Article

Stenotrophomonas maltophilia PhoP, a Two-Component Response Regulator, Involved in Antimicrobial Susceptibilities

期刊

PLOS ONE
卷 11, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0153753

关键词

-

资金

  1. National Science Council in Taiwan [NSC 102-2320-B-002-022-MY3]

向作者/读者索取更多资源

Stenotrophomonas maltophilia, a gram-negative bacterium, has increasingly emerged as an important nosocomial pathogen. It is well-known for resistance to a variety of antimicrobial agents including cationic antimicrobial polypeptides (CAPs). Resistance to polymyxin B, a kind of CAPs, is known to be controlled by the two-component system PhoPQ. To unravel the role of PhoPQ in polymyxin B resistance of S. maltophilia, a phoP mutant was constructed. We found MICs of polymyxin B, chloramphenicol, ampicillin, gentamicin, kanamycin, streptomycin and spectinomycin decreased 2-64 fold in the phoP mutant. Complementation of the phoP mutant by the wild-type phoP gene restored all of the MICs to the wild type levels. Expression of PhoP was shown to be autoregulated and responsive to Mg2+ levels. The polymyxin B and gentamicin killing tests indicated that pretreatment of low Mg2+ can protect the wild-type S. maltophilia from killing but not phoP mutant. Interestingly, we found phoP mutant had a decrease in expression of SmeZ, an efflux transporter protein for aminoglycosides in S. maltophilia. Moreover, phoP mutant showed increased permeability in the cell membrane relative to the wild-type. In summary, we demonstrated the two-component regulator PhoP of S. maltophilia is involved in antimicrobial susceptibilities and low Mg2+ serves as a signal for triggering the pathway. Both the alteration in membrane permeability and downregulation of SmeZ efflux transporter in the phoP mutant contributed to the increased drug susceptibilities of S. maltophilia, in particular for aminoglycosides. This is the first report to describe the role of the Mg2+-sensing PhoP signaling pathway of S. maltophilia in regulation of the SmeZ efflux transporter and in antimicrobial susceptibilities. This study suggests PhoPQ TCS may serve as a target for development of antimicrobial agents against multidrug-resistant S. maltophilia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据