4.6 Article

Combining Amplitude Spectrum Area with Previous Shock Information Using Neural Networks Improves Prediction Performance of Defibrillation Outcome for Subsequent Shocks in Out-Of-Hospital Cardiac Arrest Patients

期刊

PLOS ONE
卷 11, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0149115

关键词

-

资金

  1. National Nature Science Foundation of China [NSFC81271656, NSFC41301397]

向作者/读者索取更多资源

Objective Quantitative ventricular fibrillation (VF) waveform analysis is a potentially powerful tool to optimize defibrillation. However, whether combining VF features with additional attributes that related to the previous shock could enhance the prediction performance for subsequent shocks is still uncertain. Methods A total of 528 defibrillation shocks from199 patients experienced out-of-hospital cardiac arrest were analyzed in this study. VF waveform was quantified using amplitude spectrum area (AMSA) from defibrillator's ECG recordings prior to each shock. Combinations of AMSA with previous shock index (PSI) or/and change of AMSA (Delta AMSA) between successive shocks were exercised through a training dataset including 255shocks from 99patientswith neural networks. Performance of the combination methods were compared with AMSA based single feature prediction by area under receiver operating characteristic curve(AUC), sensitivity, positive predictive value (PPV), negative predictive value (NPV) and prediction accuracy (PA) through a validation dataset that was consisted of 273 shocks from 100patients. Results A total of61 (61.0%) patients required subsequent shocks (N = 173) in the validation dataset. Combining AMSA with PSI and.AMSA obtained highest AUC (0.904 vs. 0.819, p< 0.001) among different combination approaches for subsequent shocks. Sensitivity (76.5% vs. 35.3%, p< 0.001), NPV (90.2% vs. 76.9%, p = 0.007) and PA (86.1% vs. 74.0%, p = 0.005) were greatly improved compared with AMSA based single feature prediction with a threshold of 90% specificity. Conclusion In this retrospective study, combining AMSA with previous shock information using neural networks greatly improves prediction performance of defibrillation outcome for subsequent shocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据