4.7 Article

Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB), and salicylic acid (SA) in attenuation of chromium stress in maize plants

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 108, 期 -, 页码 456-467

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2016.08.014

关键词

Metal contamination; Stress alleviator; Maize crop; Oxidative stress; Antioxidant enzymes; Rhizobacteria

资金

  1. Higher Education Commission, Pakistan [PM-IPFP/HRD/HEC/2011/0582]

向作者/读者索取更多资源

Heavy metal contamination of agricultural soil has become a serious global problem. This study was aimed to evaluate the effects of two chromium (Cr) tolerant plant growth promoting bacteria (PGPB) in combination with salicylic acid (SA) on plant growth, physiological, biochemical responses and heavy metal uptake under Cr contamination. A pot experiment (autoclaved sand as growing medium) was performed using maize (Zea mays L.) as a test crop under controlled conditions. Cr toxicity significantly reduced plant growth, photosynthetic pigment, carbohydrates metabolism and increased H2O2, MDA, relative membrane permeability, proline and Cr contents in maize leaves. However, inoculation with selected PGPB (T2Cr and CrP450) and SA application either alone or in combination alleviated the Cr toxicity and promoted plant growth by decreasing Cr accumulation, H2O2 and MDA level in maize. Furthermore, dual PGPB inoculation with SA application also improved plant performance under Crtoxicity. Results obtained from this study indicate that PGPB inoculation and SA application enhanced Cr tolerance in maize seedlings by decreasing Cr uptake from root to shoot. Additionally, combination of both PGPB and SA also reduced oxidative stress by elevating the activities of enzymatic and non enzymatic antioxidant, also indicated by improved carbohydrate metabolism in maize plant exposed to Cr contamination. Comparatively, alleviation effects were more pronounced in PGPB inoculated plants than SA applied plants alone. The results suggest that combined use of PGPB and SA application may be exploited for improving production potential of maize in metal (Cr) contaminated soil. (C) 2016 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据