4.7 Article

Metabolomic profiling of the halophyte Prosopis strombulifera shows sodium salt- specific response

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 108, 期 -, 页码 145-157

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2016.07.010

关键词

Gas chromatography-mass spectrometry; Halophytic woody species; Liquid chromatography-mass spectrometry; Metabolomic profiling; NaCl; Na2SO4; Salt tolerance mechanisms

资金

  1. National Research Council of Argentina (CONICET) [2578]
  2. PIP-CONICET [1675/12]
  3. SECYT-UNRC Research Program

向作者/读者索取更多资源

Primary and secondary metabolite profiles were analyzed in roots and leaves of the halophytic shrub Prosopis strombulifera in response to control plants (no salt added in the growing media) and to lowering the osmotic potential to -1.0, -1.9, and -2.6 MPa generated by NaCl, Na2SO4, and the iso-osmotic combination of them at 24 h after reaching such potential. A rapid production of metabolites in response to sodium salt was found, which was correlated with modifications in growth parameters. Analysis of polar metabolite profiles by GC-MS rendered a total of 108 significantly altered compounds including 18 amino acids, 19 secondary metabolites, 23 carbohydrates, 13 organic acids, 4 indole acids, among others. Primary metabolites showed a differential response under the salt treatments, which was dependent on salt type and concentration, organ and age of plants. Most of identified compounds showed the strongest accumulation at the highest salt concentration assayed for Na2SO4-treated plants, which was correlated with damaging effects of sulfate anion on plant growth. Roots of NaCl-treated plants showed a higher number of altered metabolites (analyzed by UPLC-ESI-QqTOF-MS) compared to other treatments, while leaves of Na2SO4-treated plants showed the highest number of altered signals. A low degree of overlapping between secondary metabolites altered in roots and leaves of NaCl and Na2SO4-treated plants was found. However, when both NaCl and Na2SO4 salts were present plants always showed a lower number of altered metabolites. Three compounds were tentatively identified: tryptophan, lysophosphatidylcoline and 13-hydroxyoctadecadienoic acid. Increasing knowledge on P. strombulifera metabolism will contribute to unravel the underlying biochemical mechanism of salt tolerance. (C) 2016 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据