4.7 Article

Comparison of polyamine metabolism in tomato plants exposed to different concentrations of salicylic acid under light or dark conditions

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 108, 期 -, 页码 266-278

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2016.07.020

关键词

Dark; Hydrogen peroxide; Light; Nitric oxide; Polyamine; Salicylic acid; Tomato

资金

  1. Hungarian National Scientific Research Foundation [OTKA K101243, OTKA PD112855]
  2. European Union PLANTTRAIN IPA Fund [HUSRB/120/221/173]

向作者/读者索取更多资源

In this study the effect of exogenous 0.1 mM and 1 mM salicylic acid (SA) treatments were investigated on polyamine (PA) metabolism in tomato (Solanum lycopersicum L. cv. Ailsa Craig) leaves in illuminated or dark environments. The former proved to be sublethal and the latter lethal concentration for tomato leaf tissues. While PA biosynthetic genes, arginine- and ornitine decarboxylases or spermidine- and spermine synthases were highly up-regulated by 1 mM SA, the enzymes participating in PA catabolism, diamine(DAOs, EC 1.43.6) and polyamine oxidases (PAOs, EC 1.5.3.3) displayed higher transcript abundance and enzyme activity at 0.1 mM SA. As a result, putrescine and spermine content but not that of spermidine increased after 1 mM SA application, which proved to be higher in the dark than in the light. H2O2 content produced on the effect of 1 mM SA was significantly higher than at 0.1 mM SA in the light. Since there was no coincidence between H2O2 accumulation and terminal PA catabolism, reactive oxygen species produced by photosynthesis and by other sources had more pronounced effect on H2O2 generation at tissue level than DAOs and PAOs. Accordingly, H2O2 in the absence of NO accumulation contributed to the initiation of defence reactions after 0.1 mM SA treatment, while high SA concentration generated simultaneous increase in H2O2 and NO production in the light, which induced cell death within 24 h in illuminated leaves. However, the appearance of necrotic lesions was delayed in the absence of NO if these plants were kept in darkness. (C) 2016 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据