4.7 Article

Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105)

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 103, 期 -, 页码 96-105

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2016.02.038

关键词

Co-expression network; Drought tolerance QTL; Photosynthesis; Salt stress; Rice

资金

  1. Royal Golden Jubilee Ph.D. Programme [PHD/0206/2553]
  2. Khon Kaen University

向作者/读者索取更多资源

Two chromosome segment substitution lines of Khao Dawk Mali 105 (KDML105) rice that carry quantitative trait loci for drought tolerance located on chromosome 8 (DT-QTL8) designated CSSL8-94 and CSSL8-116 were investigated for co-expression network and physiological responses to salinity compared to their parents (KDML105; drought and salt sensitive recurrent parent, and DH103; drought tolerant QTL donor). These CSSL lines show different salt-response traits under salt stress (CSSL8-94 shows higher tolerance than CSSL8-116) and possess different segments of DT-QTL8. To identify specific biological process(es) associated with salt-stress response, co-expression network analysis was constructed from each DT-QTL segment. To evaluate differential physiological mechanisms responding to salt stress, all rice lines/cultivar were grown for 21 d in soils submerged in nutrient solutions, then subjected to 150 mM NaCl for 7 d. Physiological parameters related to co-expression network analysis (photosynthetic parameters) and salt responsive parameters (Na+/K+ ratio, proline content, malondialdehyde and ascorbate peroxidase activity; EC1.11.1.1) were investigated along with the expression analysis of related genes. Physiological responses under salt stress particularly photosynthesis-related parameters of CSSL8-94 were similar to DH103, whereas those of CSSL8-116 were similar to KDML105. Moreover, expression levels of photosynthesis-related genes selected from the co-expression networks (Os08g41460, Os08g44680, Os06g01850, Os03g07300 and Os02g42570) were slightly decreased or stable in CSSL8-94 and DH103 but were dramatically down-regulated in CSSL8-116 and KDML105. These differential responses may contribute to the photosynthesis systems of CSSL8-94 being less damaged under salt stress in comparison to those of CSSL8-116. It can be concluded that the presence of the specific DT-QTL8 segment in CSSL8-94 not only confers drought tolerant traits but also enhances its salt tolerant ability. (C) 2016 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据